Canonical Filtrations of Gorenstein Injective Modules
نویسندگان
چکیده
The principle “Every result in classical homological algebra should have a counterpart in Gorenstein homological algebra” was given by Henrik Holm. There is a remarkable body of evidence supporting this claim. Perhaps one of the most glaring exceptions is provided by the fact that tensor products of Gorenstein projective modules need not be Gorenstein projective, even over Gorenstein rings. So perhaps it is surprising that tensor products of Gorenstein injective modules over Gorenstein rings of finite Krull dimension are Gorenstein injective. Our main result is in support of the principle. Over commutative, noetherian rings injective modules have direct sum decompositions into indecomposable modules. We will show that Gorenstein injective modules over Gorenstein rings of finite Krull dimension have filtrations analogous to those provided by these decompositions. This result will then provide us with the tools to prove that all tensor products of Gorenstein injective modules over these rings are Gorenstein injective.
منابع مشابه
Gorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کاملRelative (co)homology of $F$-Gorenstein modules
We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.
متن کاملn-Strongly Gorenstein Projective, Injective and Flat Modules
In this paper, we study the relation between m-strongly Gorenstein projective (resp. injective) modules and n-strongly Gorenstein projective (resp. injective) modules whenever m 6= n, and the homological behavior of n-strongly Gorenstein projective (resp. injective) modules. We introduce the notion of n-strongly Gorenstein flat modules. Then we study the homological behavior of n-strongly Goren...
متن کاملJu n 20 06 Strongly Gorenstein projective , injective , and flat modules
In this paper, we study a particular case of Gorenstein projective, injective, and flat modules, which we call, respectively, strongly Gorenstein projective, injective, and flat modules. These last three classes of modules give us a new characterization of the first modules, and confirm that there is an analogy between the notion of “Gorenstein projective, injective, and flat modules”and the no...
متن کاملStrongly Gorenstein projective , injective and flat modules
Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...
متن کامل